Delaunay mesh construction
نویسندگان
چکیده
We present algorithms to produce Delaunay meshes from arbitrary triangle meshes by edge flipping and geometrypreserving refinement and prove their correctness. In particular we show that edge flipping serves to reduce mesh surface area, and that a poorly sampled input mesh may yield unflippable edges necessitating refinement to ensure a Delaunay mesh output. Multiresolution Delaunay meshes can be obtained via constrained mesh decimation. We further examine the usefulness of trading off the geometry-preserving feature of our algorithm with the ability to create fewer triangles. We demonstrate the performance of our algorithms through several experiments.
منابع مشابه
Algorithm TOMS-2006-0003: Parallel 2D Constrained Delaunay Mesh Generation
Delaunay refinement is a widely used method for the construction of guaranteed quality triangular and tetrahedral meshes. We present an algorithm and a software for the parallel constrained Delaunay mesh generation in two dimensions. Our approach is based on the decomposition of the original mesh generation problem into N smaller subproblems which are meshed in parallel. The parallel algorithm ...
متن کاملA Template for Developing Next Generation Parallel Delaunay Refinement Methods
We describe a complete solution for both sequential and parallel construction of guaranteed quality Delaunay meshes for general two-dimensional geometries. We generalize the existing sequential point placement strategies for guaranteed quality mesh refinement: instead of a specific position for a new point, we derive two types of two-dimensional regions which we call selection disks. Both types...
متن کاملLocally optimal Delaunay-refinement and optimisation-based mesh generation
The field of mesh generation concerns the development of efficient algorithmic techniques to construct high-quality tessellations of complex geometrical objects. In this thesis, I investigate the problem of unstructured simplicial mesh generation for problems in R and R, in which meshes consist of collections of triangular and tetrahedral elements. I focus on the development of efficient algori...
متن کامل1A.4 Construction of Sparse Well-spaced Point Sets for Quality Tetrahedralizations
We propose a new mesh refinement algorithm for computing quality guaranteed Delaunay triangulations in three dimensions. The refinement relies on new ideas for computing the goodness of the mesh, and a sampling strategy that employs numerically stable Steiner points. We show through experiments that the new algorithm results in sparse well-spaced point sets which in turn leads to tetrahedral me...
متن کاملConstruction of Sparse Well-spaced Point Sets for Quality Tetrahedralizations
We propose a new mesh refinement algorithm for computing quality guaranteed Delaunay triangulations in three dimensions. The refinement relies on new ideas for computing the goodness of the mesh, and a sampling strategy that employs numerically stable Steiner points. We show through experiments that the new algorithm results in sparse well-spaced point sets which in turn leads to tetrahedral me...
متن کامل